Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Fluids Barriers CNS ; 21(1): 36, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632611

RESUMO

BACKGROUND: Using in vivo neuroimaging techniques, growing evidence has demonstrated that the choroid plexus (CP) volume is enlarged in patients with several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. However, although animal and postmortem findings suggest that CP abnormalities are likely important pathological mechanisms underlying amyotrophic lateral sclerosis (ALS), the third most common neurodegenerative disease, no available study has been conducted to thoroughly assess CP abnormalities and their clinical relevance in vivo in ALS patients to date. Thus, we aimed to determine whether in vivo CP enlargement may occur in ALS patients. We also aimed to identify the relationships of CP volume with clinical disabilities and blood-CSF barrier (BCSFB) permeability in ALS patients. METHODS: In this retrospective study, based on structural MRI data, CP volume was assessed using a Gaussian mixture model and underwent further manual correction in 155 ALS patients and 105 age- and sex-matched HCs from October 2021 to April 2023. The ALS Functional Rating Scale-Revised (ALSFRS-R) was used to assess clinical disability. The CSF/serum albumin quotient (Qalb) was used to assess BCSFB permeability. Moreover, all the ALS patients completed genetic testing, and according to genetic testing, the ALS patients were further divided into genetic ALS subgroup and sporadic ALS subgroup. RESULTS: We found that compared with HCs, ALS patients had a significantly higher CP volume (p < 0.001). Moreover, compared with HCs, CP volume was significantly increased in both ALS patients with and without known genetic mutations after family-wise error correction (p = 0.006 and p < 0.001, respectively), while there were no significant differences between the two ALS groups. Furthermore, the CP volume was significantly correlated with the ALSFRS-r score (r = -0.226; p = 0.005) and the Qalb (r = 0.479; p < 0.001) in ALS patients. CONCLUSION: Our study first demonstrates CP enlargement in vivo in ALS patients, and continues to suggest an important pathogenetic role for CP abnormalities in ALS. Moreover, assessing CP volume is likely a noninvasive and easy-to-implement approach for screening BCSFB dysfunction in ALS patients.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Animais , Humanos , Plexo Corióideo , Estudos Retrospectivos , Permeabilidade Capilar
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167157, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582266

RESUMO

Statins are the first line of choice for the treatment for atherosclerosis, but their use can cause myotoxicity, a common side effect that may require dosage reduction or discontinuation. The exact mechanism of statin-induced myotoxicity is unknown. Previous research has demonstrated that the combination of idebenone and statin yielded superior anti-atherosclerotic outcomes. Here, we investigated the mechanism of statin-induced myotoxicity in atherosclerotic ApoE-/- mice and whether idebenone could counteract it. After administering simvastatin to ApoE-/- mice, we observed a reduction in plaque formation as well as a decrease in their exercise capacity. We observed elevated levels of lactic acid and creatine kinase, along with a reduction in the cross-sectional area of muscle fibers, an increased presence of ragged red fibers, heightened mitochondrial crista lysis, impaired mitochondrial complex activity, and decreased levels of CoQ9 and CoQ10. Two-photon fluorescence imaging revealed elevated H2O2 levels in the quadriceps, indicating increased oxidative stress. Proteomic analysis indicated that simvastatin inhibited the tricarboxylic acid cycle. Idebenone treatment not only further reduced plaque formation but also ameliorated the impaired exercise capacity caused by simvastatin. Our study represents the inaugural comprehensive investigation into the mechanisms underlying statin-induced myotoxicity. We have demonstrated that statins inhibit CoQ synthesis, impair mitochondrial complex functionality, and elevate oxidative stress, ultimately resulting in myotoxic effects. Furthermore, our research marks the pioneering identification of idebenone's capability to mitigate statin-induced myotoxicity by attenuating oxidative stress, thereby safeguarding mitochondrial complex functionality. The synergistic use of idebenone and statin not only enhances the effectiveness against atherosclerosis but also mitigates statin-induced myotoxicity.

3.
Cerebellum ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429489

RESUMO

COQ8A plays an important role in the biosynthesis of coenzyme Q10 (CoQ10), and variations in COQ8A gene are associated with primary CoQ10 deficiency-4 (COQ10D4), also known as COQ8A-ataxia. The current understanding of the association between the specific variant type, the severity of CoQ10 deficiency, and the degree of oxidative stress in individuals with primary CoQ10 deficiencies remains uncertain. Here we provide a comprehensive analysis of the clinical and genetic characteristics of an 18-year-old patient with COQ8A-ataxia, who exhibited novel compound heterozygous variants (c.1904_1906del and c.637C > T) in the COQ8A gene. These variants reduced the expression levels of COQ8A and mitochondrial proteins in the patient's muscle and skin fibroblast samples, contributed to mitochondrial respiration deficiency, increased ROS production and altered mitochondrial membrane potential. It is worth noting that the optimal treatment for COQ8A-ataxia remains uncertain. Presently, therapy consists of CoQ10 supplementation, however, it did not yield significant improvement in our patient's symptoms. Additionally, we reviewed the response of CoQ10 supplementation and evolution of patients in previous literatures in detail. We found that only half of patients could got notable improvement in ataxia. This research aims to expand the genotype-phenotype spectrum of COQ10D4, address discrepancies in previous reviews regarding the effectiveness of CoQ10 in these disorders, and help to establish a standardized treatment protocol for COQ8A-ataxia.

4.
World J Stem Cells ; 16(2): 137-150, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38455095

RESUMO

Blood vessels constitute a closed pipe system distributed throughout the body, transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys. Changes in blood vessels are related to many disorders like stroke, myocardial infarction, aneurysm, and diabetes, which are important causes of death worldwide. Translational research for new approaches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems. Although mice or rats have been widely used, applying data from animal studies to human-specific vascular physiology and pathology is difficult. The rise of induced pluripotent stem cells (iPSCs) provides a reliable in vitro resource for disease modeling, regenerative medicine, and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells. This review summarizes the latest progress from the establishment of iPSCs, the strategies for differentiating iPSCs into vascular cells, and the in vivo transplantation of these vascular derivatives. It also introduces the application of these technologies in disease modeling, drug screening, and regenerative medicine. Additionally, the application of high-tech tools, such as omics analysis and high-throughput sequencing, in this field is reviewed.

5.
Stem Cell Res ; 77: 103386, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38484449

RESUMO

We obtained skin fibroblasts from a 34-year-old healthy woman and established a human induced pluripotent stem cell (hiPSC) line (INDSUi005-A) using a non-integrated reprogramming approach. The obtained cells have typical characteristics of embryonic stem cells, can express specific pluripotency markers and have the ability to differentiate into three germ layers in vitro. This iPSC cell line can be used as an in vitro model for studying disease mechanisms and developing novel therapies.

7.
Pract Neurol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326019
8.
J Pathol ; 263(1): 8-21, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38332735

RESUMO

Pompe disease is a lysosomal storage disorder that preferentially affects muscles, and it is caused by GAA mutation coding acid alpha-glucosidase in lysosome and glycophagy deficiency. While the initial pathology of Pompe disease is glycogen accumulation in lysosomes, the special role of the lysosomal pathway in glycogen degradation is not fully understood. Hence, we investigated the characteristics of accumulated glycogen and the mechanism underlying glycophagy disturbance in Pompe disease. Skeletal muscle specimens were obtained from the affected sites of patients and mouse models with Pompe disease. Histological analysis, immunoblot analysis, immunofluorescence assay, and lysosome isolation were utilized to analyze the characteristics of accumulated glycogen. Cell culture, lentiviral infection, and the CRISPR/Cas9 approach were utilized to investigate the regulation of glycophagy accumulation. We demonstrated residual glycogen, which was distinguishable from mature glycogen by exposed glycogenin and more α-amylase resistance, accumulated in the skeletal muscle of Pompe disease. Lysosome isolation revealed glycogen-free glycogenin in wild type mouse lysosomes and variously sized glycogenin in Gaa-/- mouse lysosomes. Our study identified that a defect in the degradation of glycogenin-exposed residual glycogen in lysosomes was the fundamental pathological mechanism of Pompe disease. Meanwhile, glycogenin-exposed residual glycogen was absent in other glycogen storage diseases caused by cytoplasmic glycogenolysis deficiencies. In vitro, the generation of residual glycogen resulted from cytoplasmic glycogenolysis. Notably, the inhibition of glycogen phosphorylase led to a reduction in glycogenin-exposed residual glycogen and glycophagy accumulations in cellular models of Pompe disease. Therefore, the lysosomal hydrolysis pathway played a crucial role in the degradation of residual glycogen into glycogenin, which took place in tandem with cytoplasmic glycogenolysis. These findings may offer a novel substrate reduction therapeutic strategy for Pompe disease. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Glicoproteínas , Humanos , Camundongos , Animais , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/patologia , Doença de Depósito de Glicogênio Tipo II/terapia , Glicogênio/análise , Glicogênio/metabolismo , Glucosiltransferases/metabolismo , Músculo Esquelético/patologia , Lisossomos/metabolismo
10.
CNS Neurosci Ther ; 30(2): e14647, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385674

RESUMO

AIMS: This study was designed to evaluate the magnetic resonance imaging (MRI) patterns of the lower limb muscles in dermatomyositis (DM) with anti-transcriptional intermediate factor 1-γ (anti-TIF1-γ) antibody. METHODS: This retrospective, observational, cross-sectional study enrolled 12 adult DM patients with anti-TIF1-γ antibody. Muscles were assessed for fascial edema, subcutaneous-tissue edema, muscle edema, and fatty replacement. These features were analyzed in relation to clinical characteristics. RESULTS: All 12 patients underwent hip and thigh MRI, and 8 completed calf MRI. All patients showed myofascial edema, muscle edema, and fatty replacement, and 8 out of 12 further exhibited subcutaneous-tissue edema. Specifically, myofascial edema of the gastrocnemius was observed in all patients (8/8). The vastus intermedialis and vastus lateralis muscles showed the most severe muscle edema, whereas the caput breve of the biceps femoris, semitendinosus, and soleus muscles exhibited the most severe fatty replacement. Although only 1 patient exhibited asymmetric muscle weakness, 9 showed asymmetric muscle edema, and 10 showed asymmetric fatty replacement. Changes in muscle edema positively correlated with creatine kinase (CK) levels. CONCLUSIONS: Myofascial edema of gastrocnemius was a prominent characteristic of anti-TIF1-γ-positive DM. Early detection of muscle edema, as well as CK levels, may be helpful for monitoring disease activity.


Assuntos
Dermatomiosite , Adulto , Humanos , Dermatomiosite/complicações , Dermatomiosite/diagnóstico por imagem , Estudos Retrospectivos , Estudos Transversais , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Imageamento por Ressonância Magnética/métodos , Edema/diagnóstico por imagem , Edema/patologia
11.
J Hum Genet ; 69(3-4): 125-131, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38228875

RESUMO

Lipid storage myopathy (LSM) is a heterogeneous group of lipid metabolism disorders predominantly affecting skeletal muscle by triglyceride accumulation in muscle fibers. Riboflavin therapy has been shown to ameliorate symptoms in some LSM patients who are essentially concerned with multiple acyl-CoA dehydrogenation deficiency (MADD). It is proved that riboflavin responsive LSM caused by MADD is mainly due to ETFDH gene variant (ETFDH-RRMADD). We described here a case with riboflavin responsive LSM and MADD resulting from FLAD1 gene variants (c.1588 C > T p.Arg530Cys and c.1589 G > C p.Arg530Pro, FLAD1-RRMADD). And we compared our patient together with 9 FLAD1-RRMADD cases from literature to 106 ETFDH-RRMADD cases in our neuromuscular center on clinical history, laboratory investigations and pathological features. Furthermore, the transcriptomics study on FLAD1-RRMADD and ETFDH-RRMADD were carried out. On muscle pathology, both FLAD1-RRMADD and ETFDH-RRMADD were proved with lipid storage myopathy in which atypical ragged red fibers were more frequent in ETFDH-RRMADD, while fibers with faint COX staining were more common in FLAD1-RRMADD. Molecular study revealed that the expression of GDF15 gene in muscle and GDF15 protein in both serum and muscle was significantly increased in FLAD1-RRMADD and ETFDH-RRMADD groups. Our data revealed that FLAD1-RRMADD (p.Arg530) has similar clinical, biochemical, and fatty acid metabolism changes to ETFDH-RRMADD except for muscle pathological features.


Assuntos
Proteínas Ferro-Enxofre , Erros Inatos do Metabolismo Lipídico , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Distrofias Musculares , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Acil Coenzima A/uso terapêutico , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Proteínas Ferro-Enxofre/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Riboflavina/genética , Riboflavina/metabolismo , Riboflavina/uso terapêutico
12.
J Neurol ; 271(2): 864-876, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37847292

RESUMO

OBJECTIVE: Mitochondrial myopathy without extraocular muscles involvement (MiMy) represents a distinct form of mitochondrial disorder predominantly affecting proximal/distal or axial muscles, with its phenotypic, genotypic features, and long-term prognosis poorly understood. METHODS: A cross-sectional study conducted at a national diagnostic center for mitochondrial disease involved 47 MiMy patients, from a cohort of 643 mitochondrial disease cases followed up at Qilu Hospital from January 1, 2000, to January 1, 2021. We compared the clinical, pathological, and genetic features of MiMy to progressive external ophthalmoplegia (PEO) and mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) patients. RESULTS: MiMy patients demonstrated a more pronounced muscle involvement syndrome, with lower 6MWT scores, higher FSS, and lower BMI compared to PEO and MELAS patients. Serum levels of creatinine kinase (CK), lactate, and growth and differentiation factor 15 (GDF15) were substantially elevated in MiMy patients. Nearly a third (31.9%) displayed signs of subclinical peripheral neuropathy, mostly axonal neuropathy. Muscle biopsies revealed that cytochrome c oxidase strong (COX-s) ragged-red fibers (RRFs) were a typical pathological feature in MiMy patients. Genetic analysis predominantly revealed mtDNA point pathogenic variants (59.6%) and less frequently single (12.8%) or multiple (4.2%) mtDNA deletions. During the follow-up, a majority (76.1%) of MiMy patients experienced stabilization or improvement after therapeutic intervention. CONCLUSIONS: This study provides a comprehensive profile of MiMy through a large patient cohort, elucidating its unique clinical, genetic, and pathological features. These findings offer significant insights into the diagnostic and therapeutic management of MiMy, ultimately aiming to ameliorate patient outcomes and enhance the quality of life.


Assuntos
Acidose Láctica , Síndrome MELAS , Oftalmoplegia Externa Progressiva Crônica , Acidente Vascular Cerebral , Humanos , Síndrome MELAS/genética , Músculos Oculomotores , Estudos Transversais , Qualidade de Vida , Acidente Vascular Cerebral/patologia , DNA Mitocondrial/genética , Oftalmoplegia Externa Progressiva Crônica/genética , Oftalmoplegia Externa Progressiva Crônica/patologia
13.
Brain ; 147(1): 100-108, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37584389

RESUMO

Recently, an astrocytic aquaporin 4-dependent drainage system, that is, the glymphatic system, has been identified in the live murine and human brain. Growing evidence suggests that glymphatic function is impaired in patients with several neurodegenerative diseases, including Alzheimer's and Parkinson's disease. As the third most common neurodegenerative disease, although animal studies have indicated that early glymphatic dysfunction is likely an important pathological mechanism underpinning amyotrophic lateral sclerosis (ALS), no available study has been conducted to thoroughly assess glymphatic function in vivo in ALS patients to date, particularly in patients with early-stage ALS. Thus, using diffusion tensor imaging analysis along the perivascular space (ALPS) index, an approximate measure of glymphatic function in vivo, we aimed to explore whether glymphatic function is impaired in patients with patients with early-stage ALS, and the diagnostic performance of the ALPS index in distinguishing between patients with early-stage ALS and healthy subjects. We also aimed to identify the relationships between glymphatic dysfunction and clinical disabilities and sleep problems in patients with early-stage ALS. In this retrospective study, King's Stage 1 ALS patients were defined as patients with early-stage ALS. We enrolled 56 patients with early-stage ALS and 32 age- and sex-matched healthy control subjects. All participants completed clinical screening, sleep assessment and ALPS index analysis. For the sleep assessment, the Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale and polysomnography were used. Compared with healthy control subjects, patients with early-stage ALS had a significantly lower ALPS index after family-wise error correction (P < 0.05). Moreover, receiver operating characteristic analysis showed that the area under the curve for the ALPS index was 0.792 (95% confidence interval 0.700-0.884). Partial correlation analyses showed that the ALPS index was significantly correlated with clinical disability and sleep disturbances in patients with early-stage ALS. Multivariate analysis showed that sleep efficiency (r = 0.419, P = 0.002) and periodic limb movements in sleep index (r = -0.294, P = 0.017) were significant predictive factors of the ALPS index in patients with early-stage ALS. In conclusion, our study continues to support an important role for glymphatic dysfunction in ALS pathology, and we provide additional insights into the early diagnostic value of glymphatic dysfunction and its correlation with sleep disturbances in vivo in patients with early-stage ALS. Moreover, we suggest that early improvement of glymphatic function may be a promising strategy for slowing the neurodegenerative process in ALS. Future studies are needed to explore the diagnostic and therapeutic value of glymphatic dysfunction in individuals with presymptomatic-stage neurodegenerative diseases.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Humanos , Animais , Camundongos , Esclerose Amiotrófica Lateral/complicações , Imagem de Tensor de Difusão , Estudos Retrospectivos , Aquaporina 4
14.
Medicine (Baltimore) ; 102(47): e36338, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38013265

RESUMO

Tripterygium wilfordii Hook F (TwHF) has been widely used to relieve rheumatoid arthritis (RA) in many countries. However, a bibliometric analysis of published articles discussing this treatment has not been conducted. This study aimed to explore the current status and trends of TwHF for treating RA. Literature was extracted from the Science Citation Index Expanded Database of the Web of Science from January 1, 2013 to December 31, 2022. CiteSpace and the "bibliometrix" package were adopted to analyze the number of publications, countries, institutions, journals, authors, and keywords and to draw collaborative network maps. One hundred sixty-seven articles were identified. China has the most articles, followed by the United States. The China Academy of Chinese Medical Science had the study's most significant publications and the highest centrality. The author analysis combined with the analysis of the cited authors, the rank of Lin Na is in an important position. The Journal of Ethnopharmacology, Frontiers in Pharmacology has published the most relevant articles and is the hottest related journal. For keyword analysis, "classification," "criteria," "mechanism," and "methotrexate" were still being researched hot until 2022. Further investigation showed that "TNF-α," "proliferation," "endothelial growth factor," "NF-κB," and "collagen-induced arthritis" also remains research hotspot. Our results provide information on the research status, institutions, countries, authors, published journals, keywords related to using TwHF to treat RA, and theoretical support for further research.


Assuntos
Artrite Reumatoide , Tripterygium , Humanos , Artrite Reumatoide/tratamento farmacológico , Bibliometria , Metotrexato , Academias e Institutos
15.
J Med Genet ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923380

RESUMO

BACKGROUND: Oculopharyngodistal myopathy (OPDM) is a rare adult-onset neuromuscular disease, associated with CGG repeat expansions in the 5' untranslated region of LRP12, GIPC1, NOTCH2NLC and RILPL1. However, the genetic cause of a proportion of pathoclinically confirmed cases remains unknown. METHODS: A total of 26 OPDM patients with unknown genetic cause(s) from 4 tertiary referral hospitals were included in this study. Clinical data and laboratory findings were collected. Muscle samples were observed by histological and immunofluorescent staining. Long-read sequencing was initially conducted in six patients with OPDM. Repeat-primed PCR was used to screen the CGG repeat expansions in LOC642361/NUTM2B-AS1 in all 26 patients. RESULTS: We identified CGG repeat expansion in the non-coding transcripts of LOC642361/NUTM2B-AS1 in another two unrelated Chinese cases with typical pathoclinical features of OPDM. The repeat expansion was more than 70 times in the patients but less than 40 times in the normal controls. Both patients showed no leucoencephalopathy but one showed mild cognitive impairment detected by Montreal Cognitive Assessment. Rimmed vacuoles and p62-positive intranuclear inclusions (INIs) were identified in muscle pathology, and colocalisation of CGG RNA foci with p62 was also found in the INIs of patient-derived fibroblasts. CONCLUSIONS: We identified another two unrelated cases with CGG repeat expansion in the long non-coding RNA of the LOC642361/NUTM2B-AS1 gene, presenting with a phenotype of OPDM. Our cases broadened the recognised phenotypic spectrum and pathogenesis in the disease associated with CGG repeat expansion in LOC642361/NUTM2B-AS1.

16.
J Med Genet ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37890998

RESUMO

BACKGROUND: Mutations in the tropomyosin receptor kinase fused (TFG) gene are associated with various neurological disorders, including autosomal recessive hereditary spastic paraplegia (HSP), autosomal dominant hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) and autosomal dominant type of Charcot-Marie-Tooth disease type 2. METHODS: Whole genome sequencing and whole-exome sequencing were used, followed by Sanger sequencing for validation. Haplotype analysis was performed to confirm the inheritance mode of the novel TFG mutation in a large Chinese family with HSP. Additionally, another family diagnosed with HMSN-P and carrying the reported TFG mutation was studied. Clinical data and muscle pathology comparisons were drawn between patients with HSP and patients with HMSN-P. Furthermore, functional studies using skin fibroblasts derived from patients with HSP and patients with HMSN-P were conducted to investigate the pathomechanisms of TFG mutations. RESULTS: A novel heterozygous TFG variant (NM_006070.6: c.125G>A (p.R42Q)) was identified and caused pure HSP. We further confirmed that the well-documented recessively inherited spastic paraplegia, caused by homozygous TFG mutations, exists in a dominantly inherited form. Although the clinical features and muscle pathology between patients with HSP and patients with HMSN-P were distinct, skin fibroblasts derived from both patient groups exhibited reduced levels of autophagy-related proteins and the presence of TFG-positive puncta. CONCLUSIONS: Our findings suggest that autophagy impairment may serve as a common pathomechanism among different clinical phenotypes caused by TFG mutations. Consequently, targeting autophagy may facilitate the development of a uniform treatment for TFG-related neurological disorders.

17.
J Am Chem Soc ; 145(41): 22609-22619, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37803879

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) is often accompanied by upregulation of homocysteine (Hcy). Excessive Hcy damages cerebral vascular endothelial cells and neurons, inducing neurotoxicity and even neurodegeneration. Normally, supplementation of vitamin B12 is an ideal intervention to reduce Hcy. However, vitamin B12 therapy is clinically inefficacious for CIRI. Considering oxidative stress is closely related to CIRI, the lysosome is the pivotal site for vitamin B12 transport. Lysosomal oxidative stress might hinder the transport of vitamin B12. Whether lysosomal malondialdehyde (lysosomal MDA), as the authoritative biomarker of lysosomal oxidative stress, interferes with the transport of vitamin B12 has not been elucidated. This is ascribed to the absence of effective methods for real-time and in situ measurement of lysosomal MDA within living brains. Herein, a fluorescence imaging agent, Lyso-MCBH, was constructed to specifically monitor lysosomal MDA by entering the brain and targeting the lysosome. Erupting the lysosomal MDA level in living brains of mice under CIRI was first observed using Lyso-MCBH. Excessive lysosomal MDA was found to affect the efficacy of vitamin B12 by blocking the transport of vitamin B12 from the lysosome to the cytoplasm. More importantly, the expression and function of the vitamin B12 transporter LMBD1 were proved to be associated with excessive lysosomal MDA. Altogether, the revealing of the lysosomal MDA-LMBD1 axis provides a cogent interpretation of the inefficacy of vitamin B12 in CIRI, which could be a prospective therapeutic target.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Camundongos , Vitamina B 12/farmacologia , Vitamina B 12/metabolismo , Malondialdeído/metabolismo , Células Endoteliais/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Lisossomos/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Vitaminas/metabolismo , Homocisteína/metabolismo
18.
Chem Biol Interact ; 383: 110692, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37659625

RESUMO

As a nucleotide analogue (NA), telbivudine was widely used in the treatment for chronic hepatitis B (CHB) by interfering with reverse transcriptase of hepatitis B virus. However, the use of NAs for hepatitis B treatment has been accompanied by numerous reports highlighting the occurrence of neuromyopathy, particularly in the case of telbivudine. This study aimed to investigate the underlying mechanisms responsible for telbivudine-induced myopathy. We established animal and cell models of telbivudine-induced myopathy using C57BL/6 mice and C2C12 cells, respectively. Our findings revealed that telbivudine significantly reduced mitochondrial DNA (mtDNA) copy number and caused increase of oxidative stress. Telbivudine treatment significantly inhibited mitochondrial complex I and IV expression, impairing the oxidative phosphorylation function of the respiratory chain. Modified Gomori trichrome (MGT) staining of the muscle sections displayed an increase in ragged red fibers (RRFs), indicating abnormal mitochondrial accumulation. In conclusion, our study provides compelling evidence suggesting that telbivudine-induced myopathy is associated with mitochondrial toxicity and impaired energy metabolism. The observed muscle pathology, depletion of mtDNA, elevation of oxidative stress and altered mitochondrial function support the hypothesis that telbivudine disrupts mitochondrial homeostasis, ultimately leading to muscle damage. This may be also a common mechanism for NAs to cause neuromyopathy.


Assuntos
Doenças Musculares , Camundongos , Animais , Camundongos Endogâmicos C57BL , Telbivudina , Doenças Musculares/induzido quimicamente , DNA Mitocondrial , Mitocôndrias
19.
J Mol Med (Berl) ; 101(10): 1237-1253, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37603049

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is caused by mutations in the TYMP gene, which encodes thymidine phosphorylase (TP). As a cytosolic metabolic enzyme, TP defects affect biological processes that are thought to not be limited to the abnormal replication of mitochondrial DNA. This study aimed to elucidate the characteristic metabolic alterations and associated homeostatic regulation caused by TYMP deficiency. The pathogenicity of novel TYMP variants was evaluated in terms of clinical features, genetic analysis, and structural instability. We analyzed plasma samples from three patients with MNGIE; three patients with m.3243A > G mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS); and four healthy controls (HC) using both targeted and untargeted metabolomics techniques. Transcriptomics analysis and bioenergetic studies were performed on skin fibroblasts from participants in these three groups. A TYMP overexpression experiment was conducted to rescue the observed changes. Compared with controls, specific alterations in nucleosides, bile acids, and steroid metabolites were identified in the plasma of MNGIE patients. Comparable mitochondrial dysfunction was present in fibroblasts from patients with TYMP deficiency and in those from patients with the m.3243A > G mutation. Distinctively decreased sterol regulatory element binding protein (SREBP) regulated cholesterol metabolism and fatty acid (FA) biosynthesis as well as reduced FA degradation were revealed in fibroblasts with TYMP deficiency. The restoration of thymidine phosphorylase activity rescued the observed changes in MNGIE fibroblasts. Our findings indicated that more widespread metabolic disturbance may be caused by TYMP deficiency in addition to mitochondrial dysfunction, which expands our knowledge of the biochemical outcome of TYMP deficiency. KEY MESSAGES: Distinct metabolic profiles in patients with TYMP deficiency compared to those with m.3243A > G mutation. TYMP deficiency leads to a global disruption of nucleoside metabolism. Cholesterol and fatty acid metabolism are inhibited in individuals with MNGIE. TYMP is functionally related to SREBP-regulated pathways. Potential metabolite biomarkers that could be valuable clinical tools to improve the diagnosis of MNGIE.


Assuntos
DNA Mitocondrial , Timidina Fosforilase , Humanos , Timidina Fosforilase/genética , Timidina Fosforilase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Mutação , DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Colesterol , Ácidos Graxos
20.
Neuromolecular Med ; 25(4): 489-500, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37603145

RESUMO

AIFM1 is a mitochondrial flavoprotein involved in caspase-independent cell death and regulation of respiratory chain complex biogenesis. Mutations in the AIFM1 gene have been associated with multiple clinical phenotypes, but the effectiveness of riboflavin treatment remains controversial. Furthermore, few studies explored the reasons underlying this controversy. We reported a 7-year-old boy with ataxia, sensorimotor neuropathy and muscle weakness. Genetic and histopathological analyses were conducted, along with assessments of mitochondrial function and apoptosis level induced by staurosporine. Riboflavin deficiency and supplementation experiments were performed using fibroblasts. A missense c.1019T > C (p. Met340Thr) variant of AIFM1 was detected in the proband, which caused reduced expression of AIFM1 protein and mitochondrial dysfunction as evidenced by downregulation of mitochondrial complex subunits, respiratory deficiency and collapse of ΔΨm. The proportion of apoptotic cells in mutant fibroblasts was lower than controls after induction of apoptosis. Riboflavin deficiency resulted in decreased AIFM1 protein levels, while supplementation with high concentrations of riboflavin partially increased AIFM1 protein levels in variant fibroblasts. In addition, mitochondrial respiratory function of mutant fibroblasts was partly improved after riboflavin supplementation. Our study elucidated the pathogenicity of the AIFM1 c.1019T > C variant and revealed mutant fibroblasts was intolerant to riboflavin deficiency. Riboflavin supplementation is helpful in maintaining the level of AIFM1 protein and mitochondrial respiratory function. Early riboflavin treatment may serve as a valuable attempt for patients with AIFM1 variant.


Assuntos
Doenças Mitocondriais , Deficiência de Riboflavina , Masculino , Humanos , Criança , Deficiência de Riboflavina/genética , Deficiência de Riboflavina/metabolismo , Riboflavina/uso terapêutico , Riboflavina/genética , Riboflavina/metabolismo , Mutação de Sentido Incorreto , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...